PHYSICAL / INORGANIC **CHEMISTRY**

DPP No. 54

Total Marks: 38

Max. Time: 43 min.

Topic: Chemical Kinetics

Type of Questions

Single choice Objective ('-1' negative marking) Q.1 Comprehension ('-1' negative marking) Q.2 to Q.6

Subjective Questions ('-1' negative marking) Q.7 to Q.9

Match the Following (no negative marking) Q.10

M.M., Min.

[3, 3]

(3 marks 3 min.) (3 marks 3 min.)

[15, 15] (4 marks 5 min.) [12, 15]

(8 marks 10 min.) [8, 10]

1. For the following parallel chain reaction

Given that $\frac{[B]_t}{} = \frac{16}{}$ what will be that value of overall half-life of A in minutes?

(A) 3.3

(B) 6.3

(C) 3.6

(D) None

Comprehension # (Q.2 to Q.6)

Dehydration of 2-methyl-6-phenyl cyclohexanol is a first order kinetics. Dehydration of this cyclohexanol gives 3-methyl-1-phenyl cyclohexene and 1-methyl-3-phenyl cyclohexene. Yields of these products are different due to different rate constant of their respective parallel paths. $4 \times 10^{-4} \text{M sec}^{-1}$ is the rate constant of first path in which 1-methy-3-phenyl-cyclohexene is formed. After 2303 seconds, 3M and 2M of 3-methyl-1-phenyl cyclohexene and 1-methyl-3-phenyl-cyclohexene are obtained respectively.

2. Which of the following is the value of rate constant of second path –

(A) $4 \times 10^{-4} \text{ sec}^{-1}$

(B) $6 \times 10^{-4} \text{ sec}^{-1}$

(C) $3 \times 10^{-4} \text{ sec}^{-1}$

(D) $2 \times 10^{-4} \text{ sec}^{-1}$

The half life period of dehydration of 2-methyl-6-phenyl cyclohexanol is: 3.

(A) 463 sec

(B) 599 sec

(C) 735 sec

(D) 693 sec

The average life period of the above process is: 4.

(A) 1000 sec

(B) 1200 sec

(C) 888.8 sec

(D) 1271.92 sec

The initial concentration of 2-methyl-6-phenyl cyclohexanol taken is: 5.

(A) 4.545

(B) 6.555

(C) 5.555

(D) 7.545

- 6. The rate of dehydration of alcohol at 2303 seconds is
 - (A) 5.55×10^{-4} mol/L-sec

(B) 4×10^{-4} mol/L-sec

(C) 12×10^{-4} mol/L-sec

- (D) $6.55 \times 10^{-4} \text{ mol/L-sec}$
- 7. For the reaction A ——— products, the following data is given for a particular run.

time (min.):

- - 35

5

Determine the order of the reaction.

8. If for a first order reaction, rate constant varies with temperature according to the graph given below. At 27°C, 1.5 × 10⁻⁴ percent of the reactant molecules are able to cross over the potential barrier.

At 52°C, the slope of this graph is equal to 0.2 K⁻¹ sec⁻¹, calculate the value of rate constant at 52°C, assuming that activation energy does not change in this temperature range.

9. For a Parallel first order reaction

Concentration of reactant and product change according to the graph given below.

Calculate the value of k_1 and k_2 . Given, $\frac{k_1}{k_2} = \frac{1}{2}$

10. For a general reaction A \rightarrow B let α = Degree of dissociation. Other notations have their usual meaning

(A)
$$\alpha$$
 (if order = 1)

(B)
$$\alpha$$
 (if order = 2)

(q)
$$\frac{\kappa t}{C_{A_0}}$$

(C)
$$\alpha$$
 (if order = 0)

(r)
$$\frac{C_{A_0}kt}{C_{A_0}kt+1}$$

(D)
$$\alpha$$
 (if order = 0.5)

(s)
$$1 - \frac{C_{A_1}}{C_{A_0}}$$

Answer Kev

DPP No. # 54

1.

4. (A)

6.

 $K = 5.25 \text{ sec}^{-1}$

$$k_2 = \frac{1}{45} \ln(2.5) \text{min}^{-1}$$
.

$$k_1 = \frac{1}{90} \ln(2.5) \text{min}^{-1};$$
 $k_2 = \frac{1}{45} \ln(2.5) \text{min}^{-1}.$ **10.** $(A - p, s)$; $(B - r, s)$; $(C - q, s)$; $(D - s)$

ints & Sol

PHYSICAL / INORGANIC CHEMISTRY

DPP No. # 54

1. We have,

$$\frac{[B]_t}{[C]_t} = \frac{4k_1}{3k_2} = \frac{16}{9}$$
 so, $\frac{k_1}{k_2} = \frac{4}{3}$

$$\frac{k_1}{k_2} = \frac{4}{3}$$

Now, $k = k_1 + k_2 = [2 \times 10^{-3} + \frac{3}{4} \times 2 \times 10^{-3}] \text{ sec}^{-1}$

$$=\frac{7}{2}\times 10^{-3}\,\text{sec}^{-1}=\frac{7\times 10^{-3}\times 60}{2}\,\text{min}^{-1}$$

$$= \frac{7}{2} \times 10^{-3} \text{ sec}^{-1} = \frac{7 \times 10^{-3} \times 60}{2} \text{ min}^{-1} \qquad \text{so, } T_{1/2} = \frac{\ell \text{n 2}}{7 \times 30 \times 10^{-3}} \text{ min} = \frac{693}{7 \times 30} = 3.3 \text{ min.}$$

2. $A_{K_2}^{K_1} = \frac{B}{C} = \frac{K_1}{K_2} = \frac{2}{3}$

$$K_1 = 4 \times 10^{-4}$$

$$K_2 = \frac{3}{2} \times 4 \times 10^{-4} = 6 \times 10^{-4} \text{ sec}^{-1}$$
.

 $t_{1/2} = \frac{0.693}{K_1 + K_2} = \frac{0.693}{10^{-3}} = 693 \text{ sec.}$ 3.

 $t = \frac{1}{K_1 + K_2} = 10^3$ 4.

 $t = \frac{2.303}{K} \log \left(\frac{C_0}{C_0 - X} \right) \qquad \Rightarrow \qquad 2303 = \left(\frac{2.303}{10^{-3}} \right) \log \left(\frac{C_0}{C_0 - 5} \right)$

 $\log \frac{C_0}{C_0 - 5} = 1$

$$\Rightarrow \frac{C_0}{C_0 - 5} = 10$$
 \Rightarrow $9C_0 = 50, C_0 = 50/9.$

6.

= K [C]
=
$$10^{-3} \times [C_0 - x]$$

= $10^{-3} \times [50/9 - 5]$

$$= 10^{-3} \times \frac{5}{9} = 5.55 \times 10^{-4}$$

 $K = \left(\frac{1}{C_4} - \frac{1}{C_0}\right) \times \frac{1}{t} = \frac{2-1}{5} = \frac{4-1}{15} = \frac{8-1}{35} = \frac{1}{5} = \text{constant}$

$$\Rightarrow$$
 e^{-Ea / RT} × 100 = 1.5 × 10⁻⁴

$$\Rightarrow e^{-Ea/RT} \times 100 = 1.5 \times 10^{-6}$$

$$\Rightarrow$$
 e^-Ea / 2 × 300 = 1.5 × 10⁻⁶ \Rightarrow E $_{a}$ (cal) = 8014.5 cal.

$$K = Ae^{-Eq/RT}$$

$$\frac{dK}{dT} = Ae^{-Eq/RT} \left(\frac{-Ea}{R} \times \frac{-1}{T^2} \right)$$

$$\frac{dK}{dT} = K \frac{Ea}{RT^2} \Rightarrow 0.2 = K \frac{Ea}{2 \times (325)^2}$$

$$\Rightarrow$$
 K = $\frac{0.2 \times 2 \times (325)^2}{\text{Ea (cal)}}$ = 5.25 S⁻¹

9.

$$\frac{k_1}{k_2} = \frac{1}{2}$$

[X], =
$$ae^{-(k_1+k_2)t}$$

$$[Y]_t = \frac{k_1 a}{k_1 + k_2} \left(1 - e^{-(k_1 + k_2)t} \right) \& [Z]_t = \frac{k_2 a}{k_1 + k_2} \left(1 - e^{-(k_1 + k_2)t} \right)$$

$$[X]_t = [Z]_t$$

$$ae^{-(k_1+k_2)\times 30} = \frac{k_2 a}{k_1+k_2} \left(1-e^{-(k_1+k_2)\times 30}\right)$$

$$\Rightarrow$$
 on solving, $(k_1 + k_2) = \frac{1}{30} \ln \frac{5}{2}$ (i)

10. (A)
$$\alpha = \frac{x}{a} = \frac{C_{A_0} - C_{A_1}}{C_{A_0}} = 1 - \frac{C_{A_1}}{C_{A_0}}$$

$$\therefore C_{A_t} = C_{A_0}e^{-Kt} \Rightarrow \alpha = 1 - \frac{C_{A_0}e^{-Kt}}{C_{A_0}} = 1 - e^{-Kt}$$

(B)
$$\frac{1}{C_{A_t}} - \frac{1}{C_{A_0}} = Kt \Rightarrow C_{A_t} = \frac{C_{A_0}}{C_{A_0}Kt + 1} \Rightarrow \alpha = \frac{C_{A_0}}{C_{A_0}Kt + 1} = \frac{C_{A_0}Kt}{C_{A_0}Kt + 1}$$

(C)
$$\alpha = 1 - \frac{C_{A_t}}{C_{A_0}}$$
 $\therefore C_{A_t} = C_{A_0} - Kt$

$$\alpha = 1 - \frac{C_{A_0} - Kt}{C_{A_0}} = \frac{Kt}{C_{A_0}}$$